Introduction to Solution of Navier-Stokes Equation

Larry Caretto
Mechanical Engineering 692

Computational Fluid Dynamics

March 1, 2010

Northridge

Homework for March 3

- Download the Excel workbook from the course web site for the sample convection problem with Pe_{cell} = 1.25
 - Shows results for Central and Upwind on separate worksheets
- Add similar worksheets to get results for Hybrid, Power Law, and QUICK
- Add error results for these algorithms to the error chart
- Any questions?

 California State University
 Northridge

Outline

- · Review finite-volume convection
 - Central, upwind, power law, QUICK, TVD
- · False diffusion
- · Solving the Navier-Stokes Equations
 - Approaches
 - Grids
 - Pressure terms and the need for staggered arids
 - Derivation of momentum equations

Northridge

3

Review Algorithm Properties

- Conservative schemes conserve properties in finite difference equations
 - Requires exit flux from one face to be same as input flux in adjacent cell
- Transportive schemes have correct balance between diffusion and convection
- Accuracy need schemes that have a good truncation error

Northridge

Review Algorithm Properties II

- Limit on coefficient magnitude for iteration schemes (boundedness)
 - Absolute value of diagonal coefficient must be greater than the sum of absolute values of all other coefficients
 - For simple equations here $|a_P| \ge |a_E| + |a_W|$
 - Deferred correction separates coefficients into two parts
 - Adjustment leaves $|a_P| \ge |a_E| + |a_W|$
 - Places part removed from adjusted coefficients into source term

California State University
Northridge

Review Convection Terms

 Steady equation with convection and diffusion terms in one dimension

$$\frac{d\rho u\varphi}{dx} = \frac{d}{dx} \Gamma \frac{d\varphi}{dx}$$

 Steady continuity equation in one dimension

$$\frac{d\rho u}{dx} = 0$$

1

 Apply finite volume approach to integrate small volume

$$\int \frac{d\rho u \varphi}{dx} dV = \int \frac{d}{dx} \Gamma \frac{d\varphi}{dx} dV \qquad \int \frac{d\rho u}{dx} dV = 0$$

Northridge

Review Integrated PDE

- · Constant area result
 - Define F = ρu and D = $\Gamma/\delta x$

$$F_e \varphi_e - F_w \varphi_w = D_e (\varphi_E - \varphi_P) - D_w (\varphi_P - \varphi_W)$$

- Different approaches for ϕ_e and ϕ_w
 - Central difference, upwind, hybrid, powerlaw, QUICK, TVD
 - All get relations among neighbor nodes
 - Three nodes for all but QUICK

$$a_W \varphi_W - a_P \varphi_P + a_E \varphi_E = 0$$

Special treatment for boundary nodes

Northridge

Review Example Problem

• Constant ρ , u, and Γ with $\phi = \phi_0$ at x = 0 and $\phi = \phi_L$ at x = L

$$\frac{d\rho u\varphi}{dx} = \frac{d}{dx} \Gamma \frac{d\varphi}{dx} \quad \Rightarrow \quad \frac{\rho u}{\Gamma} \frac{d\varphi}{dx} = \frac{d}{dx} \frac{d\varphi}{dx}$$

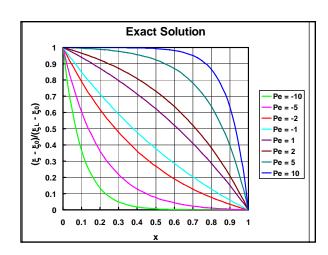
Exact solution below with plot on next slide

$$\frac{\varphi(x) - \varphi_0}{\varphi_L - \varphi_0} = \frac{e^{\frac{\rho ux}{\Gamma}} - 1}{\frac{\rho uL}{\Gamma}}$$

Pe = ρ uL/ Γ

$$Pe_{cell} = \rho u \delta x / \Gamma = F/D$$

California State University
Northridge



Review Central Difference

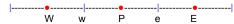
- Here $\delta x,\,\rho u$ and Γ are constants

• Boundary conditions at x = 0 and x = L

$$-\bigg(\frac{F}{2}+3D\bigg)\phi_1+\bigg(D-\frac{F}{2}\bigg)\phi_2=-\big(F+2D\big)\phi_{left}$$

$$\bigg(D+\frac{F}{2}\bigg)\phi_{N-2}-\bigg(3D-\frac{F}{2}\bigg)\phi_{N-1}=-\big(2D-F\big)\phi_{right}$$
 Northridge

Review Upwind Differences



Computational formulas

$$a_W = D_w + \max(F_w, 0)$$
 $a_E = D_e + \max(-F_e, 0)$
 $a_P = a_E + a_W + F_e - F_w$

• Left boundary $a_W^* = 2D_W + \max(F_W, 0)$

$$-(a_E + a_W^* + F_e - F_W)\varphi_P + a_E\varphi_E = -a_W^*\varphi_{left}$$

• Right boundary $a_E^* = 2D_e + \max(-F_e, 0)$

$$a_W \phi_W - \left(a_E^* + a_W + + F_e - F_w\right) \phi_P = -a_E^* \phi_{right}$$

Review Hybrid Difference

· Computational Formulas

$$a_W = \max \left[F_w, \left(D_w + \frac{F_w}{2} \right), 0 \right] \qquad a_E = \max \left[-F_e, \left(D_e + \frac{F_e}{2} \right), 0 \right]$$

$$a_P = a_E + a_W + F_e - F_w$$

• Left boundary $a_W^* = \max[2D_W, (2D_W + F_W)]$

$$-\left(a_E + a_W^* + F_e - F_W\right)\varphi_P + a_E\varphi_E = -a_W^*\varphi_{left}$$

• Right boundary $a_E^* = \max[2D_e, (2D_e - F_e)]$

$$a_W \varphi_W - \left(a_E^* + a_W + F_e - F_w\right) \varphi_P = -a_E^* \varphi_{right}$$

Northridge

Review Power Law

- Computations $a_P = a_E + a_W + F_e F_W$ $a_W = D_w \max \left[0, (1 - |Pe_w|^5) \right] + \max [F_w, 0]$ $Pe_w = F_w / D_w$
- $$\begin{split} a_E &= D_e \max \left[0, \left(\mathbf{l} \left| Pe_e \right|^5 \right) \right] + \max \left[-F_e, 0 \right] \quad Pe_e &= F_e/D_e \\ \bullet \text{ Left boundary: get } \mathbf{a_W^*} \text{ with } \mathbf{D_w^*} = \mathbf{2D_w} \end{split}$$
- $-(a_F + a_W^* + F_e F_W)\phi_P + a_F\phi_F = -a_W^*\phi_{left}$
- Right boundary : get a*_E with D*_e = 2D_e

$$a_W \varphi_W - \left(a_E^* + a_W + F_e - F_w\right) \varphi_P = -a_E^* \varphi_{right}$$

California State University
Northridge

Review QUICK

- QUICK formulas for central node P involve five nodes instead of three
- WW ww W w P e E

$$a_{WW}\varphi_{WW} + a_W\varphi_W - a_P\varphi_P + a_E\varphi_E + a_{EE}\varphi_{EE} = 0$$

$$a_W = D_w + \frac{6\alpha_w F_w + 3(1-\alpha_w)F_w + \alpha_e F_e}{8} \qquad a_{WW} = -\frac{\alpha_w F_w}{8} \label{eq:aw}$$

$$a_E = D_e - \frac{3\alpha_e F_e + 6(1 - \alpha_e)F_e + (1 - \alpha_w)F_w}{8} \qquad a_{EE} = \frac{(1 - \alpha_e)F_e}{8}$$

 $\begin{array}{c} \alpha_{\rm w}=1 \text{ if } {\sf F}_{\rm w}>0 \text{ and } \alpha_{\rm e}=1 \text{ if } {\sf F}_{\rm e}>0 \\ {\sf Northridge} \end{array}$

Review QUICK II

 Boundary formulas (derivation in text) - Assume $F_e > 0$ and $F_w > 0$

First node from left
$$a_W^* = \left(\frac{8}{3}D_w + \frac{1}{4}F_e + F_w\right) \quad a_E = \left(D_e + \frac{1}{3}D_w - \frac{3}{8}F_e\right) \\ -\left(a_E + a_W^* + F_e - F_w\right) p_1 + a_E \phi_2 = -a_W^* \phi_{left}$$

Second node $a_{WW}^* = \frac{F_e}{4}$ $a_W = \left(D_w + \frac{7}{8}F_w + \frac{F_e}{8}\right)$ $a_E = D_e - \frac{3}{8}F_e$

on right $a_{WW} \phi_{N-3} + a_{W} \phi_{N-2} - (a_{WW} + a_{W} + a_{W}^{*} + F_{e} - F_{w}) \phi_{N-1} = -a_{WW}^{*} \phi_{N}$ Northridge Review TVD Algorithms

- Total Variation Diminishing schemes
 - Designed to maintain both accuracy and stability with no unphysical "wiggles"
 - Consider set of different differencing schemes for ϕ_{e} with positive u velocity
 - Work originated in transient gas dynamics
 - Later modifications to general CFD
 - Based on use of limiter functions that are applied to conventional formulas
 - Deferred correction required in iteration

Northridge

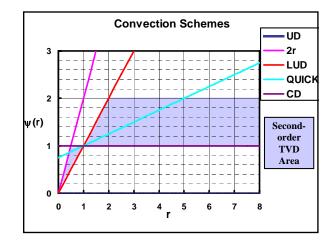
Review TVD Algorithms II

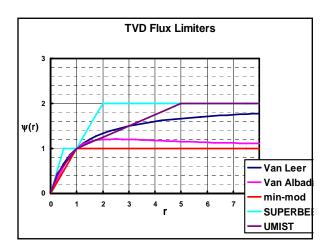
- General form is $\phi_e = \phi_P$ + Correction
- · Correction can always be written as a correction (ψ /2) times $\phi_E - \phi_P$
- Correction function ψ depends on $(\phi_P \phi_W$)/($\phi_E - \phi_P$) = r
 - $\phi_e = \phi_P + \psi(r)(\phi_E \phi_P)/2$
- For second-order accuracy and TVD

17

- For $0 < r \le 1$, $r \le \psi(r) \le 2r$
- For $1 \ge r \ge 2$, $1 \le \psi(r) \le r$
- For r > 2, $1 \le \psi(r) \le 2$

California State University
Northridge





False Diffusion

- · Upwind differencing causes errors similar to having a "diffusion" coefficient that is too large
- · Causes smearing of results
- · Especially noticeable in flows with sharp gradients and shock waves
- · Effect is reduced if flow is aligned with grid (not always possible to do this)
- · Different from artifical diffusion

Northridge

Navier-Stokes Equations

· Continuity and x-momentum

• Continuity and x-momentum
$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u u}{\partial x} + \frac{\partial \rho v u}{\partial y} + \frac{\partial w u}{\partial z} = 0$$

$$-\frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \mu \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial u}{\partial y} + \frac{\partial}{\partial z} \mu \frac{\partial u}{\partial z} + S^{(u)}$$

$$S^{(u)} = \rho B_x + \frac{\partial}{\partial x} \mu \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial v}{\partial x} + \frac{\partial}{\partial z} \mu \frac{\partial w}{\partial x} + \frac{\partial}{\partial x} \left[(\kappa - \frac{2}{3}\mu)\Delta \right]$$
Colliferant State Exhaustry
Northridge

y-momentum Equation

$$\begin{split} \frac{\partial \rho v}{\partial t} + \frac{\partial \rho u v}{\partial x} + \frac{\partial \rho v v}{\partial y} + \frac{\partial w v}{\partial z} &= \\ -\frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \mu \frac{\partial v}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial v}{\partial y} + \frac{\partial}{\partial z} \mu \frac{\partial v}{\partial z} + S^{(v)} \\ S^{(v)} &= \rho B_y + \frac{\partial}{\partial x} \mu \frac{\partial u}{\partial y} + \frac{\partial}{\partial y} \mu \frac{\partial v}{\partial y} + \\ &\qquad \qquad \frac{\partial}{\partial z} \mu \frac{\partial w}{\partial y} + \frac{\partial}{\partial y} \bigg[(\kappa - \frac{2}{3} \mu) \Delta \bigg] \end{split}$$

z-momentum Equation

$$\frac{\partial \rho w}{\partial t} + \frac{\partial \rho u w}{\partial x} + \frac{\partial \rho v w}{\partial y} + \frac{\partial w w}{\partial z} =$$

$$-\frac{\partial P}{\partial z} + \frac{\partial}{\partial x} \mu \frac{\partial w}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial w}{\partial y} + \frac{\partial}{\partial z} \mu \frac{\partial w}{\partial z} + S^{(w)}$$

$$S^{(w)} = \rho B_z + \frac{\partial}{\partial x} \mu \frac{\partial u}{\partial z} + \frac{\partial}{\partial y} \mu \frac{\partial v}{\partial z} +$$

$$\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial z} + \frac{\partial}{\partial z} \left[(\kappa - \frac{2}{3} \mu) \Delta \right]$$
Contains the largest largest property.

Navier-Stokes Equations

- · Continuity and momentum equations
- · Up to now we have been assuming that the velocity field was known and we could find the general variable, ϕ
- · This background is necessary for solving Navier-Stokes, but now we have to solve for $\phi = u$, v, and w
- This gives a set of nonlinear equations (e.g., u\psi becomes uu for x-momentum)

California State University Northridge

Navier-Stokes Equations II

- Have to find way to solve nonlinear equations
- Basic approach requires "outer" iteration process
 - Assume values for u, v, and w
 - Use these values to compute the convection/diffusion coefficients a_E, a_N, etc.
 - Solve finite difference forms of the Navier–Stokes equations for new values of u, v, and w using these "old" a_E, a_N , etc.

California State University
Northridge

25

Navier-Stokes Equations III

- Once new values of u, v, and w are known update a_E, a_N, etc. iterate again
- Consider steady-state flows now and transient flows later
- Some transient methods can use nonlinear terms at old time step to get new values for a_F, a_N, etc.
- For steady flows the iterations on the nonlinear terms becomes part of the overall iteration process

Northridge

26

Finding Pressure and Density

- For compressible flows we solve continuity and momentum for density, u, v, and w
 - Get pressure from equation of state (e.g., p
 pRT) for compressible flows
- For incompressible flows find u, v, w, and p to satisfy three momentum equations and continuity
 - Density is an input parameter or depends on variables other than local pressure

California State University Northridge

27

Incompressible Flows

- Mach number is low (< ~0.3)
- Density (e.g., ρ = p/RT) may depend on mean, but not local pressure
- Can have equations like $\rho = \rho_0 (1 + \beta T)$ for where $\beta = -(1/\rho)(\partial \rho/\partial T)_p$
- Density may be constant, but need not be for incompressible flows
 - Furnace flows a good example of this
- Basic idea is that density does not depend on local pressure

Northridge

28

Navier-Stokes Problems

- · Compressible flows
 - Solve continuity and momentum for three velocity components and density
 - Get pressure from equation of state
- · Incompressible flows
 - Mach number is low
 - Density is a problem input, often related to temperature (may or may not be constant)
 - Solve continuity and momentum for three velocity components and pressure

Northridge

29

The Steady 2D Problem

- · Continuity and momentun equations
 - Have x and y direction convection-diffusion
 - Now have source term and pressure gradient

$$\frac{\partial \rho \, u}{\partial x} + \frac{\partial \rho \, v}{\partial y} = 0$$

$$\frac{\partial \rho uu}{\partial x} + \frac{\partial \rho vu}{\partial y} = -\frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \mu \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial u}{\partial y} + S^{(u)}$$

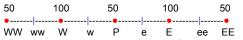
$$\frac{\partial \rho u v}{\partial x} + \frac{\partial \rho v v}{\partial y} = -\frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \mu \frac{\partial v}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial v}{\partial y} + S^{(v)}$$

Northridge

-

The Problem with Pressure

 Consider the x momentum equation for the u velocity component at point P



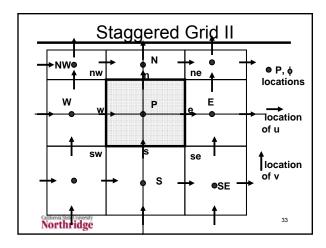
- Second-order expression $\frac{\partial p}{\partial x}\Big|_{P} = \frac{p_{E} p_{W}}{2\delta x}$
- With this expression the velocity at P is not affected by the pressure at P
- Also a checkerboard pattern of pressure would compute as zero pressure gradient orthridge

The Staggered Grid

- Problem with pressure was first recognized by Harlow and Welch in 1965
- Their solution, commonly adapted for CFD until the 1990s: the staggered grid
- If the pressure p_{ij} is the pressure at (x_i, y_j) then u_{ij} is value at $(x_i \delta x/2, y_j)$ and v_{ij} is value at $(x_i, y_i \delta y/2)$
- Colocated variables now used, but texts still introduce staggered grid

Northridge

32



Staggered Grid III

- · What is i,j notation for staggered grid?
- Can continue to use N, S, E, W, n, s, e, w, ne, nw, se, sw, etc.
- For numbering in finite-volume formulas can use i,j as p coordinate, i+1/2,j as u coordinate and i,j+1/2 as v coordinate
- Text uses I,J and i,j coordinate scheme
 - $-x_i = x_I \delta x$ and $y_i = y_J \delta y$
 - p, other ϕ values and properties (ρ, Γ) at IJ

Northridge Velocity locations u_{i,J} and v_{ij}

Staggered Grid IV ۷_{I-1j}₊ ● P, ø locations Δy \mathbf{u}_{iJ} hotherpoonsP $_{\mathrm{I+1J}}$ y $_{J}$ location LIL of u V_{I-1j} location ¦u_{iJ-T} **U**_{I+T,J-1} - y_{J-1} Northridge

Finite Volume Equations

- Extend previous results for one dimension to two dimensions
- Can use any of the difference methods discussed for convection and diffusion
 - Have four faces, n, e, s, w, in 2D
 - Apply same relations to get coefficients a_N , a_S , a_E , and a_W , using F = ρu and D = Γ/δ for each face
 - As before $a_P = (a_N + a_S + a_E + a_W + \Delta F)$ • Here $\Delta F = (F_n - F_s) + (F_e - F_w)$

Northridge

--

Finite Volume Equations II

· Integration of pressure terms

$$\left(\int_{\Delta V} \frac{\partial p}{\partial x} dV\right)_{iJ} \approx \frac{p_{IJ} - p_{I-1J}}{x_I - x_{I-1}} (x_I - x_{I-1}) A_{iJ}$$

$$= (p_{IJ} - p_{I-1J}) A_{iJ} = (p_{IJ} - p_{I-1J}) (y_{j+1} - y_j) \Delta z$$

$$\left(\int_{\Delta V} \frac{\partial p}{\partial y} dV\right)_{Ij} \approx \frac{p_{IJ} - p_{IJ-1}}{y_J - y_{J-1}} (y_J - y_{J-1}) A_{Ij}$$

$$= (p_{IJ} - p_{IJ-1}) A_{Ij} = (p_{IJ} - p_{I-1J}) (x_{i+1} - x_i) \Delta z$$

Northridge

Northridge

Finite Volume Equations III

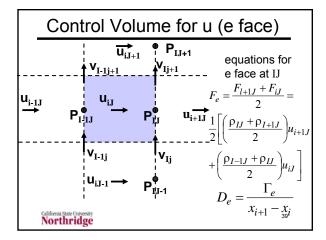
- · Have similar equations for u and v
- · b represents integrated source term
- Note that a_K coefficients vary from node to node and are different for u and v

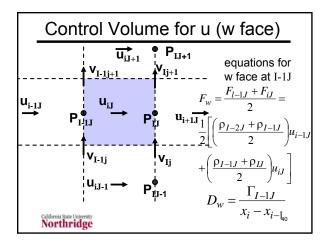
$$a_{N}u_{iJ+1} + a_{S}u_{iJ-1} + a_{E}u_{i+1J} + a_{W}u_{i-1J} - a_{P}u_{iJ}$$

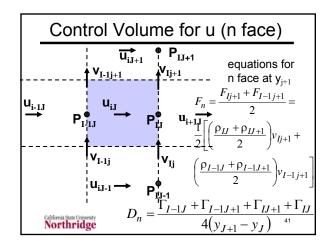
$$a_{NiJ}^{(u)}u_{iJ+1} = (p_{iJ} - p_{i-1J})A_{iJ} + b_{iJ}^{(u)}$$

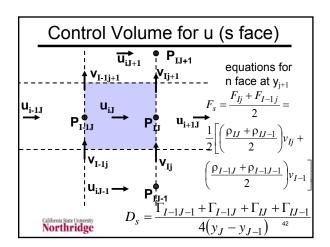
$$a_{N}v_{Ij+1} + a_{S}v_{iJ-1} + a_{E}v_{I+1j} + a_{W}v_{I-1j} - a_{P}v_{Ij}$$

$$a_{NIj}^{(v)}v_{Ij+1} = (p_{Ij} - p_{Ij-1})A_{Ij} + b_{Ij}^{(v)}$$
Northridge









Where to Next

- Have similar equations to give various F and D terms for v control volume
- Get finite volume representation of continuity by integration over control volume centered about p_{IJ} s
- Substitute finite difference momentum equations into finite difference continuity equation to get finite difference equation for pressure
- Develop solution procedure for u, v, p
 Northridge